DMS-DR-2516 NASA-CR-167,688

SPACE SHUTTLE AFRSI FULL-SCALE APPLICATION

DESIGN ISSUES TEST OS311

IN THE AMES RESEARCH CENTER (ARC)

11x11-FT WIND TUNNEL

USING MODEL 127-0 INSTALLED

IN THE 96-0 TEST FIXTURE

by

J. Marroquin and R. B. Kingsland

Rockwell International
Space Transportation & Systems Group

Prepared under NASA Contract Number NAS9-16283

bу

Data Management Services
Chrysler Military-Public Electronics Systems
Michoud Engineering Office
New Orleans, Louisiana 70189

for

Systems Engineering Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

	ARC	ARC	ARC	ARC
Test Number:	562-2-11	562-3-11	562-4-11	562-5-11
NASA Series Number:	OS-311-1	OS-311-2	OS-311-3	0S-311-4
Model No. of Test Fixture:	96-0	96-0	96 - 0	96-0
Test Stort Date:	1-28-83	3-3-83	4-12-83	6-12-83
Test Completion Date:	1-28-83	3-7-83	4-13-83	6-12-83
Occupancy Hours:	4	20	24	20

FACILITY COORDINATOR:

J. J. Brownson Ames Research Center Mail Stop: 227-5 Moffett Field, CA 94035 (415) 965-5647

PROJECT ENGINEERS:

R. B. Kingsland (ACO7 - x/1463) - Test
J. Marroquin (ACO7 - x/2695) - Test
B. A. Marshall (ACO7 - x/4620) - Test
J. M. Rivin (AB70 - x/4949) - Analysis

Rockwell International Space Transportation & Systems Group 12214 Lakewood Blvd. Downey, CA 90241

DATA MANAGEMENT SERVICES:

Approved: J. L. Glyng, Manager

Data Operations

Concurrence:

N. B. Kemp, Manager Data Management Services

Chrysler Military-Public Electronic Systems/Michoud Engineering Office assumes responsibility only for the reproduction and distribution of this document.

SPACE SHUTTLE AFRSI FULL-SCALE APPLICATION
DESIGN ISSUES TEST OS-311
IN THE AMES RESEARCH CENTER (ARC)
11x11-FT WIND TUNNEL
USING MODEL 127-O INSTALLED
IN THE 96-O TEST FIXTURE

by

John Marroquin
Rockwell International
Space Transportation Systems Division

ABSTRACT

An experimental investigation (OS-311) was conducted in four parts in the NASA/ Ames Research Center llxll-foot Transonic Wind Tunnel. The objective was to investigate AFRSI installation designs and support the determination of MR/DR criteria. The first test (OS-311-1) was conducted on January 28, 1983, the second test (OS-311-2) on March 3 through 7, 1983, the third test (OS-311-3) on April 12 and 13, 1983, and the final test (OS-311-4) on June 12, 1983. AFRSI material, configured on small test panels for application design, repairs, contamination, and MR/DR criteria evaluation were subjected to ascent aerodynamic shock loading environments which resulted in qualitative evaluation of the various configurations tested. The transonic compression shock fixture, 96-0, was used to generate the aerodynamic loading environment. Twenty-seven runs were completed during 68 hours of occupancy. Of the 27 test articles, only nine were exposed to thermal conditions prior to the wind tunnel test, and one was exposed to the actual STS-6 flight. During each of the four phases of Test OS-311, local fixture static pressures on each side of the test article were measured and recorded. Fluctuating pressure data was also obtained during these tests.

All test objectives were met. This report contains information on the conduct of Test OS-311, description of the test fixture, and the specimen, the test facility, instrumentation, and a sample of the pressure data collected during the test. Post-test pictures of the test fixture and the AFRSI test articles are also included.

(THIS PAGE INTENTIONALLY LEFT BLANK)

TABLE OF CONTENTS

		<u>Page</u>
ABSTRACT		iii
FIGURE INDE	x	2
INTRODUCTIO	N	3
NOMENCLATUR	E	5
REMARKS		6
CONFIGURATIO	ON INVESTIGATED	7
INSTRUMENTA	TION	9
TEST FACILI	TY DESCRIPTION	10
TEST PROCEDU	JRES	11
DATA REDUCT:	ION	12
REFERENCE		13
TABLES		
I. II.a III.b II.c III.d III. IV. V.a V.b V.c V.d VI.	Test Conditions Run Schedule OS-311-1 Run Schedule OS-311-2 Run Schedule OS-311-3 Run Schedule OS-311-4 Instrumentation Location, Fixture 96-0 Scanivalve Orifice Assignment Test Article Description OS-311-1 Test Article Description OS-311-2 Test Article Description OS-311-3 Test Article Description OS-311-4 OS-311 Test Summary	14 15 16 17 18 19 20 21 22 23 24

FIGURE INDEX

Figures	<u>Title</u>	Page
1.	Instrumentation Locations and Axes 96–O Test Fixture	27
2.a b c d	Model 96-0 Test Fixture - General Arrangement OS-311 Model 96-0 Fixture Holding Panel Test Article A-2 Layout Test Article A-3 Layout	28 29 30 30
3	Typical Pressure Coefficient Data OS-311 (OS-311-3)	31
4 I.A B	Post-Test Photographs of AFRSI Specimens OS-311-1 Specimen A-2 OS-311-1 Specimen A-3	32 33
II.A BCDEFGHIJKLMNO	OS-311-2 Specimen B-5 OS-311-2 Specimen B-6 OS-311-2 Specimen B-7 OS-311-2 Specimen B-15 OS-311-2 Specimen B-14 OS-311-2 Specimen B-4 OS-311-2 Specimen B-11 OS-311-2 Specimen B-2 OS-311-2 Specimen B-3 OS-311-2 Specimen B-1 OS-311-2 Specimen B-8 OS-311-2 Specimen B-8 OS-311-2 Specimen B-9 OS-311-2 Specimen B-12 OS-311-2 Specimen B-13 OS-311-2 Specimen B-13	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
III.A B C D E F	OS-311-3 Specimen C-1 OS-311-3 Specimen C-2 OS-311-3 Specimen C-3 OS-311-3 Specimen C-4 OS-311-3 Specimen C-5 OS-311-3 Specimen C-5	49 50 51 52 53 54
IV.A B C D E	OS-311-4 Specimen 4-1 OS-311-4 Specimen 4-3 OS-311-4 Specimen 4-4 OS-311-4 Specimen 4-5 OS-311-4 Specimen 4-6	55 56 57 58 59

INTRODUCTION

Advanced Flexible Reusable Surface Insulation (AFRSI) has replaced white TPS tile on parts of OV-099 and OV-103. The purpose of the test was to obtain data to assist in the selection of installation designs and the determination of MR/DR criteria.

The test was conducted using the 96-O test fixture to generate the required flow field over the AFRSI test articles. The leading edge flap of the test fixture was set at 18 degrees during the entire test and the AFRSI specimens were exposed to the ascent airloads environment until failure, or for a simulation of 100 missions (42 minutes). The aerodynamic shock environment used in the Ames Research Center 11x11-foot Transonic Wind Tunnel was an expansion/recompression shock generated by the leading edge flap on the 96-O test fixture at free stream Mach numbers from 0.8 to 0.88. The tunnel free stream stagnation pressure was set to simulate the ascent flow field and aerodynamic loading over the orbiter canopy.

(THIS PAGE INTENTIONALLY LEFT BLANK)

NOMENCLATURE

SYMBOL	MNEMONIC	DEFINITION
СР	CP	Pressure coefficient
dB	DB	Sound pressure level, dB (Decibel)
М	Mach	Freestream Mach number
P_{∞}	Р	Freestream static pressure, psia
Pl	PL	Local static pressure, psia
P _{RMS}	PRMS	Local fluctuating pressure, PSI RMS
Ρt	PT	Freestream total pressure, psia
q	Q	Freestream dynamic pressure, psf
R _e	RE	Freestream Reynolds number, per ft
T_{s}	TS	Freestream static temperature, ^o F
τ_{t}	TT	Freestream total temperature, °F
V _∞	VEL	Freestream velocity, ft/sec
X	X	Longitudinal distance positive, inches aft of test article leading edge
Y	Υ	Lateral distance positive, inches right of fixture centerline
٥F	FLAP	Test fixture flap setting, degrees
ρ	RHO	Freestream density, slugs/ft ³

Other symbology includes:

AFRSI	Advanced Flexible Reusable Surface Insulation
OML	Outer Mold Line
IML	Inner Mold Line
TOC	Time on Condition
DR	Discrepancy Report
MR	Material Review
RMS	Root-Mean Square

REMARKS

During the initial phase of Test OS-311-1, of the original nine test articles scheduled to be tested, only two were completed. Neither of the two panels were damaged after 42 minutes on-condition. The remaining seven test articles were rescheduled during Test OS-311-2.

On Test OS-311-2, of the 15 test articles, six were damaged prior to obtaining 42 minutes on-condition. (See Test Summary, Table VI.)

CONFIGURATION INVESTIGATED

Model Description

The 96-0 test fixture was used for Test OS-311. The test fixture, shown in Figures 2.a and 2.b, consists of a flap mounted at the leading edge of a specimen holding frame, two side plates, and a sealed pressure box enclosing the space beneath the holding frame. The function of the leading edge flap is to cause an expansion shock ahead of the test article, followed by a recompression shock region with attendant positive pressure gradients and high turbulence levels over the test article.

The mechanism employed to produce the desired expansion/recompression shocks was a full-span, 15-inch chord flap located at the forward end of the test panel. For this test, a turnbuckle replaced the hydraulic cylinder and was adjusted to lock the flap at 18 degrees. The fixture had end plates to make the flow field in the test area two-dimensional. The end plates (98 x 56 inches) extended from a height of three feet above the top of the test panel all the way to the floor, and were supported from underneath. The beveled leading edges were located 26 inches forward of the test specimen's leading edge.

A sealed pressure box enclosed the area under the panel. The box was vented to the tunnel plenum chamber. Also, shims and spacers were available for the test article to bring its leading edge flush with the surface of the fixture. These were intended to compensate for the 6.54-inch depth of the supporting frame inside the test fixture.

Test Article

Model 127-O designates 27 test articles, Table V, which were made up of a support plate, the AFRSI bonded to the support plate, and a frame which protected and held the AFRSI edges. When installed, the frame of the test specimen was flush with the adjacent surface of the fixture to the extent possible, particularly at the leading edge. Figures 2.c and 2.d illustrate the model configuration.

Test Specimens

The AFRSI blankets consisted of silica fiber felt (Q-felt) insulation material with a silica cloth covering and a glass cloth back lining, all quilted together with quartz thread in a one-inch square grid pattern. The quilting was done with a modified lock stitch. The outer covering (OML) was made of a heavy cover fabric which is approximately 0.027-inch thick (19.5 oz/yd² silica fabric). The batting used for these specimens was silica batting (six lb/cu ft). The inner cover (IML) was made of a 0.010-inch thick light cover (six oz/yd² S-glass fabric). The OML threads used were Q24 silica thread while the IML threads were made of E-glass threads. A sketch of a test specimen assembly is shown in Figures 2.c and 2.d.

INSTRUMENTATION

Data recorded during Test OS-311 were measured by Scanivalves attached to static pressure orifices and dynamic pressure transducers (Kulites).

Static Pressure

The test fixture was instrumented with 28 static pressure taps, fourteen on each side of the test specimen area. These 28 static pressure ports were connected to six scanivalve (one six-pack) as shown in Table IV. The instrumentation location for the 96-O test fixture is shown in Figure 1 and presented in Table III. Data from these taps were recorded during all runs. Rockwell supplied all necessary tubing, transducers, scanivalves, and associated cabling.

Fluctuating Pressure

The 96-O test fixture was instrumented with fourteen Kulite transducers to measure peripheral fluctuating pressures. Their locations are shown in Figure 1 and listed in Table III. The reference tube of all Kulites were connected to a common manifold which was vented to the tunnel static pressure. All power supplies and signal conditioning equipment associated with the Kulite transducers were supplied by ARC. Tunnel static pressure was recorded on tape with the Kulite data.

TEST FACILITY DESCRIPTION

The NASA Ames Research Center 11-ft Transonic Wind Tunnel is the transonic leg of the Ames Unitary Facility. It is a closed circuit, single return, continuous flow, variable-density tunnel. The 11x11x22-ft test section is slotted to permit transonic testing. The nozzle has adjustable sidewalls. The tunnel air is driven by a three-stage axial flow compressor powered by four wound-rotor induction motors. The speed of the motors is varied as necessary to provide the desired Mach number. The motors have a combined output of 180,000 horsepower for continuous operation or 216,000 horsepower for one hour. Tunnel temperature is controlled by aftercoolers and a cooling tower. Four 30,000 cubic-foot storage tanks provide dry air for tunnel pressurization.

The tunnel can be operated at nominal Mach numbers of 0.5 to 1.4 Reynolds number per foot x 10^{-6} of 1.7 to 9.4, dynamic pressure (PSF) of 150 to 2,000 and a total temperature ($^{\circ}$ F) of 540 to 610, respectively.

This tunnel is used for force and moment, pressure, internal air-flow inlet, and dynamic stability tests.

TEST PROCEDURES

During each of the four phases of Test OS-311, the procedure was to test each AFRSI test article to failure, or for 42 minutes (equivalent of 100 ascent missions with a scatter factor of 4). After the test article was inspected and the tunnel door was closed, the tunnel was pumped down to 28 inches of Mercury for a Scanivalve check. The tunnel was then pumped up to 33 inches of Mercury and the tunnel drive was started. The television and Kulite recorders were turned on and static pressures were recorded continually as the tunnel was being brought to M = 0.80. In all instances, the flap was kept at a constant angle of 18 degrees.

As a reached 400 psf, the environment exposure time was started. After the Mach reached 0.8, the tunnel cycled Mach from 0.8 to 0.88, and back to 0.8 as time would allow. When the test article lasted for 100 missions, the tunnel was brought off-line so that the time that a was above 400 psf would be equal to 42 minutes. If the test article failed, a fast stop would be initiated as soon as the failure occurred. In all cases, the exposure time stopped when a became less than 400 psf. The Kulite and television recorders were then turned off and the test article was inspected after the tunnel door was opened.

The amount of time that each panel was exposed to a dynamic pressure greater than or equal to 400 psf during this test was approximately 42 minutes, or an equivalent of 100 missions. During Phase 2, seven of the specimens were exposed to less than 42 minutes on condition as shown in the Test Summary, Table VI, and in the acutal Run Schedule, Table II. A summary of test conditions is shown in Table I, and a comparison of the ascent airloads environment to which the test articles were exposed at is shown in Figure 3.

DATA REDUCTION

Standard tunnel equations were used for computing all tunnel conditions.

All local static pressure data were reduced to standard pressure coefficient form using the following equation:

$$C_{p} = \frac{(P_{L} - P) \times 144}{q}$$

Typical pressure coefficient data is shown in Figure 3.

Fluctuating pressure data were recorded on magnetic tape and reduced during and after the test.

Local fluctuating pressure data were reduced to dB form as follows:

$$dB = 10 \text{ Log}_{10} \frac{PRMS \times 10^9}{2.94}^2$$

REFERENCE

 R. B. Kingsland, STS83-0084, "Pre-Test Information for the AFRSI Application Design Issues Test OS-311 in the Ames Research Center (ARC) 11x11-ft Wind Tunnel Using Model 127-O Installed in the 96-O Test Fixture" (January 1983)

TABLE I

TEST CONDITIONS - 0S-311

PT=CONSTANT=33 IN.HG /16.14 PSI/2326 PSF

MACH		Ps			q						
	IN.HG	PSI	PSF	IN.HG.	PSI	PSF					
.55	26.89	13.15	1894	5.68	2.78	400					
.80	21.55	10.59	1525	9.70	4.74	683					
.82	21.22	10.38	1495	9.99	4.88	704					
.84	20.79	10.17	1464	10.27	5.02	723					
.86	20.36	9.95	1434	10.54	5.16	743					
.88	19.35	9.75	1404	10.81	5 .2 9	761					

Post Test Run Schedule (ARC 11x11-foot) OS-311-1

18° 33 #1	ach number was cycled and for the from 0.80 to	DATA SET/RUN NUMBER COLLATION SUMMARY	DATA SET/R
282 .84 .86 .86 2	ach number was cycled and for the from 0.80 to 0.80 for officenmutely cytes and mumber. (See Test Chrustogy) Mach number. (See Test Chrustogy)	Ш	12
ach number was cycled and Forth From O.80 to o.80 for opprenemately vtes. Data was taken h Mach number. (See Test Chrundogy)	ach number was cycled and fourth from 0.80 to 0.80 for oppranmately vtes. Data was prakm h Mach number. (See Test Chrundlagy)	.80	
ach number was cycled and for the from 0.80 to 0.80 for orpressionately the form of taken h Mach number. (See Test Chronology)	ach number was cycled and Forth from 0.80 to 0.80 for appraismately vies Data was taken h Mach number (See Test Chrundogy)	\ \ \	1
ach number was cycled and forth from 0.80 to 0.80 to opposite matery taken hach number. (See Test Chronology)	ach number was cycled and for the from 0.80 to to 0.80 for oppression mutely the Mach number. (See Test Chroniclosy)	,	į.
ach number was cycled and for the from 0.80 to the compression of the	ach number was cycled and for the from 0.80 to to Opprenmately taken has have number. (See Test Chronclossy)		1
ach number was cycled and Forth from 0.80 to ves. Data was taken hach number. (See Test Chrusdogy)	ach number was cycled and for the from 0.80 to to opprenimately taken had number. (See Test Chrondogy)		
ach number was cycled and for th from 0.80 to to oppressmately taken hach number. (See Test Chronology)	ach number was cycled and for th from 0.80 to oppressmately cycled back was taken hack number. (See Test Chronology)		1
ach number was cycled and for th from 0.80 to 0.80 for apprainmately tress Data was taken h Mach number. (See Test Chronology)	ach number was cycled and for th from 0.80 to 0.80 for apprainmately tress Data was taken h Mach number. (See Test Chronology)		•
ach number was cycled and Forth from 0.80 to to 0.80 for apprenentity these Data was taken h Mach number (See Test Chrundlogy)	ach number was cycled and Forth from 0.80 to to 0.80 for apprenimately types, Data was taken h Mach number. (See Test Chrundogy)		1
ach number was cycled and for the from 0.80 to to 0.80 for apprenimately tes, Data was taken h Mach number. (See Test Chrustosy)	ach number was cycled and for the from 0.80 to to 0.80 for apprenimately tes, Data was taken h Mach number. (See Test Chrusdogy)		1
Mach number. (See Test Chrondogy) Hach number. (See Test Chrondogy)	Mach number. (See Test Chrondogy) Hach number. (See Test Chrondogy)	F. Mach	1
h Mach number. (See Test Chrustogy) Hach number. (See Test Chrustogy)	Mach number. (See Test Chronelogy)	6 to 0.8	
	I I I I I I I I I I I I I I I I I I I	mactes. D	
IDVAH [1] IDVAM [2]	IDVAH [1] I DVAM [2]		
IDVAH [1] IDVAM [2]	IDVAH [1] IDVAM [2]		- 1
I I I I I I I I I I I I I I I I I I I	IDVAH [1]		- }
I I I I I I I I I I I I I I I I I I I			į.
			}
I IDVAN (1) I DVAN (2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
IDVAN [1] IDVAN [2]	IDVAN (1) IDVAN (2)	1 1	
		DETRICIENT SCHEDULES	٥

### CONTIGUIANTION SUMMARY #### CONTIGUIANTION SCHOLPANEERS/VALUES FOCK MACH HUMBER COLLATION SUMMARY ###################################			
CONFIDURATION SCHO. PARAMETERS/VALUES FOC 7.431/6-5 3/16-6 3/16-6 1/8-7 1/8-7 1/8-7 1/8-7 1/8-7 1/8-1 1/	NUMBER COLLATION SUMMARY	DATE: AND W. 7 , 11	1963
7.4 3/1/6-5		MACH NUMBERS (OR ALTERNATE INDEPENDENT VARIABLE)	
3//8-5	*	44. 24.	
3//6-6 3//6-7 1//6-75 1//6-15 1//6-	7	7	Τ
3/18-15 1/18-15 1/18-15 1/18-17 1/16-17 3/18-4 3/18-2 3/18-2 3/18-1 3	37 ~		T
3/18-15 1/18-17 1/18-17 3/18-4 3/18-4 1/16-13 1/16-	42 /	7 7	T
31/8-14 31/8-4 31/8-4 1/6 33 1/6 42 1/6 33 1/8-6 1/6 33 1/8-7 1/6 33 1/8-7 1/6 33 1/8 -9 1/6 33 1/8 -9 1/6 33 1/8 -9 1/6 33 1/8 -7 1/6 33 1/8 -7 1/8 34 1/8 34	7 / 1	7	T
3//8-4 3//8-1/ 3//8-6 1// 33 1// 3	7		T
346-4 346-2 346-2 346-1 346-1 346-12 110 33 42 - 110 34 110 35 110 3	1		T
3/18-2 3/18-1 3/18-9 1/1° 13 3/18-9 1/1° 13 3/18-12 1/1° 13 4/2			T
3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1 3//6-1	7	7	T
3/16-1 3/16-8 1/16-12 1/16-12 1/16-13 1/16-13 1/16-13 1/16-10 1/16-13 1/16-10 1/16-13	42 ~ ~	3	T
3116-8 3116-12 3116-12 3116-13 3116-13 3116-10 10'33 42 /- 10'33 42 /- 10'33 42 /- 10'33 42 /- 10'33	42 /	1	T
3/18-9 3/18-12 5/18-13 5/18-10 10'53 42 \(\tau\)	7	7	T
31/6-12 51/6-13 51/6-13 51/6-10 70'83 6 5	Ľ	7	T
346-13 142	7 7 7	7	T
348-10 /8" 23 8 1	7 7 7	1	T
		7	T
			Γ
	1		-
	1	-	-
			-
TOC. TIME ON CONDITIONS SCHEDULES		IDVAR (1) IDVAR (2)	ò
			ł

TEST RUN NUMBERS

TABLE II.c

08-311-3
x 11-foot
ARC II
iun Schedule
Post Test Ru

<u> </u>						 	TE	37 4	*U#		•64	4	 	_				ل	ل	0 2
,1483	- 1	88	1	y	1	7		7		7										10.44 (2)
April 13	JENT VAHIA	. 8 (7		7	7		7		7							-	•	4	111 HWAN11
DATE : A	MACH NUMBERS I OR ALTERNATE INDEPENDENT VAHIABLE	. B 4	7		7	7		7		7			100	· 53	7 7 7		-	-		=
	LTEHMAT												201 cycl	3	20 TO 20	v	-	-	_	
DATA SET/RUN NUMBER COLLATION SUMMARY	ERS LORA	78.	7		7	7		7		7			number .	· ·	taken 120 (so	•	-	_		
LATION	ACH NUMB	.80	7		7	7		7		7			Mach Carle	3 0	a were	307	-		1	putts
BER COL		(MIN)	7h		42	7 h		7 h		42			Note	98.0	Dala	Chrone		1	Ī	COFFICIENT SCHEDULES
MUN NUN	77		•			<u> </u>		-												C Of 141C
TA SET/I	PARAMETERS/VALUE	1 Pt in	33		933	93		93		.33							-		-	On Conditi Point
۷۵	SCHO. PA	0 1 50	18.		180	118		18.		18								_	1	
h			_		2	3		h-		رما رما							-	ı	¥	TOC=Time
5.3		CONFICURATION	3116 -		3116-	3116-		3116-		3116-							-	•	1	707
05-311-3	L		T/A		1/4	1/4		T/A		T/A		_						_	1	OF DATA BON # SCHEDULES
TEST ! C	DATA 161	IDEN TIPIER	9		5	8		ಶ		10										ITFE OF BASA B OR SCHEDU

	263		88	1		1	1	TEST	RUN .	NUM	BER	S						~		75.76		NON 12	
	12, 1863	BERS	. 38.	7	+	1	7	1	H	7		-	9	0 70	***	?					* * * * *	(E) AB (2)	
	1 1	MACH NUMBERS	.94.	1	+	1	1	1	$\dagger \dagger$	7		•	Yeu	0.7	17	ench.	1			67	1		
	June	A	.82	_	†	7	7	1		1		-	*	FEOD	Y Y 9		72.57		i	_	1 A A A	IDVAR III	
	DATE:		08.	7		7	1	7		7		-	3	ATA	¥ 0 %	Ken	285	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1	9	111		
7007		Exposure			,	30	35	49		52		•	Note: MACH NO. WAS CYCLOD	AND FORTH FROM 0. FO	70 0.80 FOR & 41 MIW.	DATA WAS TAKEN AT	MACH No. (See	CARONORDAY		5.5	111		
SHEDULE (ARC 11 X11-FOOT	IARY	SX S	77/1	42		43	43	0 8	o	77		-	ì			3	7 #3	× 0 ×			, , , ,		
1	DATA SET/RUN NUMBER COLLATION SUMMARY	ES											Ş	BACK	0.85	140	7	₹		49	1111		
7 K	LATIO	PARAMETERS/VALUES																		43	1111		
)	R COL	METER																			4 4 4 4	s	
FDU	UMBE	PARA			+	\downarrow	+	-		\dashv										37	1	COLFFICENT	
SEH	/RUN P		₩ ¥	33			33	22		2	-									31	1	Coff	
RUN	A SET		Ì																		4		
	DAT	o ·	8 5/2	81	1	8	/8	180		18	_					_				25	4		
TEST		SCHO.	8			1				#	\dashv										4		
Posr		Z					3													61	4		
6	2	CONFIGURATION		T/A 311-4-	K //		1/4311-4-4	4-5		4-6										13	4		
	OS 311-	CONF		4 3/1	211-11-011	737	3.11-	7/431/4-5		1/431-4-6											1111	•	•
	So	E T	ER	72	1	+	12		- '	77	\dashv		_	_						,		8 08 8	L
	rest:	DATA SET	OENTIFIER	4	لد	7	9	7	٥	0											444	8	,
l	ĒΙ		<u>ا</u>			_					10										1		-

TABLE III

INSTRUMENTATION LOCATION, FIXTURE 96-0

, Y	STATIC TAPS	Kulites	
X	-16	16	at Y=16
0	201	101	
1	202	102	K1
2	203	103	K2
4	204	104	К3
6	205	105	K4
8	206	106	K5
10	207	107	K6
12	208	108	K7
14	209	109	К8
16	210	110	К9
18	211	111	K10
20	212	112	KII
24	213	113	K12
30			K13
36	214	114	K14

TABLE IV

SCANIVALVE ORIFICE ASSIGNMENT

	MEA	SUREM	ENT NUN	1BER		
	DRIVE VALUE					
PORT	1	2	3	4	5	6
0	REF					->
1	CAL					-
2	101	102	103	104	105	106
3	107	108	109	110	111	112
4	113	114	201	202	203	204
5	205	206	207	208	209	210
6	211	212	213	214		

96-O TEST FIXTURE
11-FT TUNNEL (OS-311)

TABLE V.a

TEST ARTICLE DESCRIPTION OS-311-1

I.D.	NAME	DETAILED DESCRIPTION
A-2	MIN BOND PRESS	AFRSI APPLIED WITH MIN BOND PRESS ~1 PSI
A-3	MIN BOND PRESS + PLUG	SAME AS A-2 PLUS REPAIR PLUG WITH 1/4 PSI BOND PRESS

TABLE V.b

TEST ARTICLE DESCRIPTION OS-311-2

I.D.	NAME	DETAILED DESCRIPTION
B-1	F/B-Pad Bond	6" Strip: No Bond Filler Bar-to-Blanket
B-2	T/C Stitchlines	IML Stitchlines only were transfer-coated.
8-3	56% Bond	Only ≈56% of IML surface bonded to plate.
B-4	Grease, RTV + 1500°F	Exposed to one cycle at 1500°F in plasma Arc – grease on fabric and RTV spots.
B-5	Narrow Strip	1.25" wide blanket evaluated.
B-6	Thick Pad	1.94" thick pad fabricated by RI's AMT.
B-7	Gypsum	Several weeks outdoor exposure at WSTF.
B-8	Salt Spray (HS + 1800°F)	5 cycles at 1800°F in plasma Arc, ≈2.4g/M² salt (year exposure).
B-9	Salt Spray (NS + 1800°F)	5 cycles at 1800°F in plasma Arc: No salt
B-10	Salt spray (HS + 1500°F)	5 Cycles at 1500°F in plasma Arc, ≈2.4g/M² salt (year exposure)
B-11	Salt spray (NS + 1500°F)	5 cycles at 1500°F in plasma Arc: No salt
B-12	1/8" Holes	1/8" Puncture holes - damage evaluation
B-13	Thick Pad	Duplicate of 311B-6
B-14	RTV + 1500°F	Exposed to one cycle at 1500°F in plasma Arc - RTV bleedthrough & spill
B-15	1500°F	Exposed to one cycle at 1500°F in plasma Arc

TABLE V.c

TEST ARTICLE DESCRIPTION OS-311-3

I.D.	T/A NAME	DETAILED DESCRIPTION
C-1	CUT REPAIR	1/2" CUT REPAIR: LOOP STITCHING
C-2	DAMAGE ALLOWABLE	1/4" OML CUTS
C-3	GAP FILLERS	RECESSED PILLOW-TYPE GAP FILLERS
C-4	GAP FILLERS	RECESSED SOLID CORD (0.90", 0.160") GAP FILLERS
C-5	SIDEWALL REPAIR	FABRIC (0.011") SIDEWALL REPAIR

TABLE V.d

TEST ARTICLE DESCRIPTION OS-311-4

I.D.	NAME	DETAILED DESCRIPTION
4-1	Hi Fiber 1" Stitching	Control Panel No Thermal Exposure
4-3	Hi Fiber 1" Stitching	Bird Dropping
4-4	Hi Fiber l" Stitching	Salt spray and plasma ARC thermal exposure to 1500°F
4-5	Hi Fiber 1" Stitching	Salt spray and plasma ARC thermal exposure to 1800°F
4-6	STS-6 Flight OMS Pod Blanket	STS-6 flight blanket repaired seams

TABLE VI
OS-311 TEST SUMMARY

Test <u>Article</u>	Δ Time q=400 psf to M=0.80	Number of Cycles M=.8→.88→.8	Time q=400 psf to Tunnel Start Off Line (Min.)	Exposed Time q=400 Going Up to q=400 Going Down (Min.)	* Post-Test Condition
A-2	3	4.5	40	4 I	(1)
A-3		5	41	43	(1)
B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12	2 4 2 2 2 5 2 3 2 2 2 2	5 3.5 4.5 1 7.5 2 5 0 4 1 0 5	40 40 39 11 41 26 40 6 40 8 8	42 43 41 11 43 26 41 6 42 8 8	No Change No Change (2) No Change (3) No Change (4) No Change (5) (6) No Change
B-13 (Run 20) B-13 (Run 21) B-13 (Total)	3 2 5	0 5 5	6 34 40	6 36 42	(7) No Change No Change
C-1	2	3	40	42	No Change
C-2	3	7	40	42	No Change
C-3	2	4	41	42	No Change
C-4	2	3.5	39	42	No Change
C-5	2	9.5	40	42	(9)
4-1	8	2.75	39	42	No Change
4-3	7	4	41	42	(10)
4-4	5	4.5	40	43	(11)
4-5	3	5	38	41	(11)
4-6	8	5.3	41	43	No Change

^{*}See notations on following page.

TABLE VI (Concluded)

OS-311 TEST SUMMARY

(1)	A-2/A-3	Slight lifting or separation at joints.
(2)	B-2	OML cover lost aft left hand side.
(3)	B-6	OML cover out from under trailing edge frame.
(4)	B-8	OML cover and matting lost forward right side.
(5)	B-10	OML cover and matting lost aft half.
(6)	8-11	OML cover and matting lost aft left hand side.
(7)	B-13	OML cover pulled out from under trailing frame during Run 20, stopped, repaired, and ran again as Run 21.
(8)	B-15	Lost all OML cover and matting.
(9)	C-5	Torn repair.
(10)	4-3	Two rips not related to bird's deposit locations.
(11)	4-4/4-5	Broken Threads

FIGURE 1 INSTRUMENTATION LOCATION & AXES $96-\emptyset$ TEST FIXTURE

FIGURE 2.a MODEL 96-Ø TEST FIXTURE GENERAL ARRANGEMENT OS311

FIGURE 2.b MODEL 96-0 FIXTURE HOLDING PANEL

FIGURE 2.c TEST ARTICLE A-2 LAYOUT

FIGURE 2.4 TEST ARTICLE A-3 LAYOUT

æ

FIGURE 4 POST-TEST PHOTOGRAPHS OF AFRSI SPECIMENS

311A-2

IA OS-311-1 SPECIMEN 311A-2 1.0 PSI PRESSURE BONDED BLANKET.

FIGURE 4 POST-TEST PHOTOGRAPHS OF AFRSI SPECIMENS Post Ru

IB OS-311-1 SPECIMEN 311A-3 0.25 PSI PRESSURE BONDED W/REPAIR PLUG.

1.94" THICK PAD 311B-6 Post Test 1# Run 0S-311-2 SPECIMEN 311B-6 <u>m</u> 1,900

IIC 0SS-311-2 SPECIMEN 311B-7 RUN #8 GYPSUM-SEVERAL WEEKS OUTD (OUTDOORS.)

IID OS-311-2 SPECIMEN B-15 RUN #10 ONE CYCLE PLASMA ARC 1500°F

IIIB OS-311-3 SPECIMEN 3110-2 1/4" OML CUTS

IIID 0S-311-3 SPECIMEN 311C-4 RECESSED SOLID CORD (0.90", 0.160")
GAP FILLER:

IIIe OS-311-3 Specimen 311C-5 Fabric (0.011") Side WALL REPAIR

O POST-TEST PHOTOGRAPHS OF AFRSI SPECIMENS RUN #4 CONTROL PANEL 0S-311-4 SPECIMEN 311-4-1 FIGURE 4 55 IVB 0S-311-4 SPECIMEN 311-4-3 RUN #5 BIRD DROPPING

1Vp 0S-311-4 SPECIMEN 311-4-5 RUN #7 SALT + 18000F

		-
		_